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Abstract

This paper presents a modal method for the analysis of controlled structural

systems that retains the uncoupled nature of the classical transient response

analysis of a structure subjected to a prescribed time-varying load. The control

force is expanded as a Taylor series that remains on the right side of the

equations, and it does not lead to a computational approach that requires

coupling between modes on the left side. Retaining a sufficient number of terms

in the series produces a solution to the modal equations that is accurate to

machine precision. The approach is particularly attractive for large problems in

which standard matrix exponential methods become computationally prohibitive.

Numerical results are presented to show the accuracy and efficiency of the

proposed approach for dynamic feedback compensation of a truss structure with

local member modes in the controller bandwidth.

Introduction

Interest has been increasing in analyzing complex structures subjected to time-dependent loadings

including loads from a control system designed to permit controls-structures integration (CSI). The

control problem is more acute when dealing with structures that may respond both locally and

globally in a large number of frequencies due to the applied load. The main challenge in such an

analysis is achieving accurate results with a reasonable amount of computational effort. The method

presented in this paper is based on a modal approach and can achieve accurate results for the number
of modes used.

The computational approach developed herein to predict the dynamic behavior of controlled

structural systems is based on a partitioning of the structure and controller equations such that

the diagonal modal form of the equations of the structure is preserved. Although this idea is not

new to the literature, the treatment of the interaction forces between the structure and controller is

described for the first time by a series representation. The number of tcrms in the series controls

the accuracy of the solution which can bca priori prescribed or automatically set to bc equal to the

machine precision. The high accuracy obtainable with this approach is shown to permit relatively

large integration time steps. This feature, in conjunction with the uncoupled modal equations for

the structure, leads to highly efficient computations.

Tile governing equations for the controlled structural system are described. Subsequently, a

Taylor-series expansion of the control forces is presented. Through the use of a Taylor-series

expansion, a set of recursivc relations to compute the modal states and their time derivatives

are developed. The proposed approach and a more conventional approach, which fully couples

the equations, are applied to the solution of a two-dimensional truss with dynamic feedback

compensation. The accuracy and efficiency of tile two approaches arc compared. The efficiency of

the proposed approach is shown to be substantially better than that of the conventional approach. A

large number of local member modes in the truss structure arc used to demonstrate the importance

of developing computational tools for large structural dynamic models.

Nomenclature

A, B, C, D

a

d( )

control matrices defined in equations (2) and (4)

vector of time-dependent modal amplitude coefficients

derivative operator
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E

Ej

F

Fj

f

G

g

Hj

h

I

J

K

Ke

k

M

m

N

n

Pj

q

R, S

&, 82

8

Tj

t

u

x

Y

Zrn

F,O

0

control-force influence matrix

matrix defined in equation (A5)

applied time-varying load vector

matrix defined in equation (A2)

modal applied force vector

damping matrix

diagonal modal damping matrix

matrices defining sensed output measurements used in equation (3)

modal forcing vector

identity matrix

variable index (J = 1, 2, 3, 4)

stiffness matrix

exact frequency-dependent stiffness matrix

diagonal modal stiffness matrix

mass matrix

diagonal modal mass matrix

number of terms used in Taylor series

integer identifying term in Taylor series

matrices defined in equation (A4)

displacement vector

matrices used in matrix exponential solution of equation (20)

coefficients used in solution of differential equation (sec cq. (12))

variable

coefficients defined in equations (13) and (14)

time

control force vector

controller state vector

output measurement vector

particular solution of differential equation defined in equation (12)

matrices formed from FiT_ and _ij, respectively

submatrices in full matrix solution given in equation (18), where i,j = 1-3

parameters defined in equation (12)

time step

matrix formed from vibration modes

null matrix
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Subscript:

integeridentifyinga particularmode

Superscripts:

(n) nth derivative with respect to time

T transpose of matrix or vector

Boldface quantities denote vectors or matrices; dots denote derivatives with respect to time.

Governing Equations

A standard finite element representation is used to describe the response of a structure to time-

varying forces including state-dependent forces typical of feedback control systems. The controlled

structural system is governed by the equation

MR + Gtl+ Kq = F + Eu (1)

where q is the real displacement vector, M is the mass matrix, (_ is the damping matrix, and K

is the stiffness matrix. The time-varying applied load is F, and a feedback control system produces
control forces u where E is a control force influence matrix.

The control forces are assumed to be

u -- Cx + Dy (2)

where y denotes the sensed output measurements given by

y = Hlq + H2_l + H3_i + H4u (3)

and x denotes the controller states that are governed by

:- Ax + By (4)

In equations (1)-(4), u, x, y, and q are vectors, whereas the remaining boldfaced quantities are

matrices. The form of the control system equations is of a very general nature that can be applied to

a variety of specific treatments that have been used in the literature. The time history of response

is expressed in terms of the natural vibration modes as

q-- _a (5)

where _ is a matrix whose ith column is the natural vibration mode (eigenvector) corresponding

to the ith eigenvalue of the undamped system, and a is a vector of time-dependent amplitude

coefficients. This response leads to the differential equation

m_i + gh + ka -- h (6a)

where m, g, and k are modal values of mass, damping, and stiffness, and h is the vector of modal

loads that includes the applied load and the control force. These quantities are

m = @TM_ g = @TG_ k = _TK@ (6b)

3



and
h = _I'TF+ _TEu = f + 'IJTEu (6c)

Because of the orthogonality of the mode shapes @ with respect to K and M, the first three

matrices in equation (6a) are diagonal if proportional damping is assumed; that is, (_ is a linear

combination of K and M. Nonproportional damping can be treated by putting the damping terms

on the right side of the equations and treating them as part of the control system. In reference 1,

results from the solution of equations (6) were presented for the case of no control forces. When h

includes feedback control forces, all the elements of a will be coupled. If the specific dependence on

a and _ of h is brought to the left side of the equations, we no longer have a simple diagonal set of

equations to solve but a set of fully populated matrix equations. The full matrix solution of these

equations leads to large computer storage and run times. The next section presents a partitioned

solution approach that retains the control-force loading terms on the right side of the equations.

Partitioned Integration Formulas

In reference 2, a partitioning approach that retains the symmetry and sparsity of the structural

equations was developed in conjunction with an approximate implicit method for time integration.

The approach of reference 2 is applicable to both the coupled physical coordinate equations and the

uncoupled modal coordinate equations. However, the implicit integration procedure of reference 2

requires small integration time steps to maintain accuracy. An alternate approach for the modal

coordinate equations that retains the diagonal nature, but uses an exact integration approach, is to

express the control force as a Taylor series.

Taylor-Series Solution for Control Forces

The control force h as a Taylor series ab.out t -- 0 is given by

(_)t nh= _ (7)

where (n)h" is the nth derivative of h evaluated at t = 0, and N is the number of terms in the Taylor-

series expansion. To facilitate the calculation of (n)h , one can modify the control equations as shown

in the appendix to eliminate y and _i. The following sequence of equations is used to calculate (n)h:

_i = mM(f + _TEu - gh - ka)

-----Ela + E2h + E3f + E4x

u = Pla + P2h + P3f + P4x

(s)

(9)

(10)

with the equation for h given by

h = f + _TE(Pla + P2h + P3f + P4x) (II)

The determination of the nth derivative of h requires the n and n + 1 derivatives of a and the

nth derivative of x. For example, (1)h involves ii and _¢ as determined from equations (8) and (9).
(2) (3)

To calculate h , it and a are obtained by taking the derivative of equations (8) and (9), which can

be evaluated using the just-determined _, ii, and "'_l_) . This process can be repeated recursively by



takingtime derivativesof equations(8)-(11)to obtaina sufficientnumberof termsin the Taylor
seriesto giveaccurateresults.

Differential Equation Solution for Modal Amplitudes

The solution to equations (6) with h given by equation (7) is

where

N

ar = exp(--Trt ) [Slr cos(wrt) + S2r sin(wrt)] + E Zrntn
n=0

gFr
"Yr--

2mrr

(12)

Zrn
(n)
hr

(n + 1)!

i krrCOr= ,.y2
mrr

(n + 2)mrr(Zr)n+2 - grr(Zr)n+l

(Zr)N+2 = (Zr)N+l = 0

n+l

krr

The two constants Slr and S2r are determined by knowing ar and fir at t = 0. The solution at
t=6 is

where

N

at(5) =Tlr [at(0) - zr0] + T2r [fir(0) - Zrl] + E ZrnSn
n=O

N

fr(_) = T3r [ar(0) - ZrO] + T4r [fir(0) - Zrl] J- E 7%Zrn_n-1

n=l

(13)

(14)

Tlr = exp(-_r6) [cos(wr6) + _rr Sin(wr6) ]

sin(wr6)
T2r = exp(-_rS) +

_.Or

2 2
T3r = - exp(-'yrS) wr + "_$ sin(wrS)

_3r

T4r = exp(-'yr6) [c°s(wrS) - "Yr sin(wrS) ]Wr

Because the equations for the control state are coupled, an analytic solution is not attempted.

However, with all the derivatives up to N available, the controller state at time 5 can be obtained
as

N (_1_
x: mr (15)

n----0

When the problem has no control forces, this solution is exact for any time step 6 as long as all

the derivatives of f are included. When the control forces are present, a variable number of terms are

taken so that the control force is known to a certain accuracy at a given time step. Alternatively, a

fixed number of terms may be used for all time steps.



If thenumberof terms is too large, the series in equation (12) involving zrn has been found to

contain large terms of opposite sign such that accurate results cannot be obtained. When this event

occurs, a more accurate solution for the modal amplitudes is obtained by simply using the result

N+I (n) _n

a= _ n! (16)
n_O

which is easily calculated because all the derivatives of a are available.

For discrete time control systems, a special case can be obtained by taking only one term in the

series of equation (7). This procedure has the effect of a zero-order hold which applies a control force

having a value corresponding to the conditions at the beginning of the step and remaining constant

throughout the time step.

Nonpartitioned Integration Formulas

To assess the accuracy and efficiency of the partitioned solution approach presented in this paper,

the nonpartitioned integration formulas are presented here and used for comparisons in the "Results
and Discussion" section.

The explicit dependence of the control force on a and x can be accounted for directly by

substituting equation (10) into equations (6). Thus,

mii -{-(g - @TEP2)_ -{-(k - _TEp1)a - _TEP4x = (I + @TEP3)f (17)

By applying the integration method of reference 3 to equations (9) and (17), the following general
form is obtained:

 OllO12o13]ra  jrrllr12r13/ / /

x(t +5) L'I'sl 'I_32 cI,ss Lx(t) Lr3t F32 r33

• .. Fin ]

• .. r2n
• .. F3n J

f(t)

/'(t)

?(t)

(n;1) (t).

(18)

The matrices in equation (18) are generated from a Taylor series so that sufficient terms can be

taken to achieve machine accuracy.

When the applied forces are reprcsented with a zero-order hold, then f = 0 for n > 0. Thus,

equation (18) reduces to

a(t+5)][a(t)]
_(t + 5) = [,_] |_(t) | + [r] If(t)] (19)

/ /

x(t + 5) Lx(t) J

For periodic sampling with period 5, the matrices _ and r are computed by the matrix

exponential (ref. 4)

cI_=e P_

5

F = /e Rs ds S
0

(20)



where

and

a

0 I 0 ]
_m-l(k_ _TEP1) -m-l(g _ _TEP2) m-I_TEP4

E1 E2 E4

S ____ 0 1m-l(I + _TEP3)

E3 J

Results and Discussion

A vibration and transient response analysis has been carried out for the planar-truss beam shown

in figure 1. In the results herein, no damping has been assumed. Two truss structures with the

properties shown in table I are considered. Case 1 has mass only at the nodes, whereas case 2 has

the same total mass, but with distributed mass in the diagonal members such that the first overall

beam mode and the lowest diagonal member mode have similar frequencies. These cases allowed the

method to be evaluated in a problem in which only a few modes are required for accuracy and also in

a problem in which a large number of modes in a narrow frequency range would affect the response.

A comparison of the two results gives an indication of the importance of the interaction of local

and overall modes in dynamic response. Results have been obtained from the program BUNVIS-RG

(ref. 5) which is based on an exact stiffness formulation that yields accurate results for all modes

and eigenvalues without the introduction of nodes beyond those at member intersections. In the

BUNVIS-RG analysis, the exact global stiffness matrix Ke is a transcendental function of frequency

with the result that no separate mass and stiffness matrices occur. However, as shown in references 6

and 7, a modal mass matrix may be obtained as

di e

dw2

With this M, the modal quantities in equations (6) are exact for all eigenvalues, and additional

nodes are not required to achieve accuracy.

[_-I.I--_ I

1.2

2 _F
• Controller

Figure 1. Planar-truss beam. Dimensions are given in meters.

Table I. Beam Member Properties

Axial stiffness, N, for--

Chord Batten

2.8 × 107 0.84 x 107

2.8 .84

t Diagonal

1.0 × 10 7

1.0

Bending stiffness, N-m 2, for

Ch°rd [ _ _B,,ten _l Diagona!

720[ 195 [ 120
720 195 1 120L ...............

Mass of joint,

kg

Mass of diagonal,

kg/m

1.46 0
.80 .81

7



Vibration

The lowest vibration mode for the configuration with only lumped mass is shown in figure 2 and

is seen to have the character of a first-beam bending mode. For the configuration with distributed

mass in the diagonals, two modes are shown that exhibit both beam bending and local member

vibrations. In the same frequency range, seven more modes occur that are almost entirely local in

nature. An appreciable local response is expected to occur for any excitation containing a frequency

content near these vibration frequencies. Reference 1 shows this local behavior where the harmonic

response of these configurations is shown over a large frequency range.

fl = 13.77 Hz

fl = 15.37 Hz

(a) Case 1 (lumped member mass).

f9 = 20.03 Hz

(b) Case 2 (distributed diagonal member mass).

Figure 2. Effect of local member interaction on vibration modes.

250

200

Z 150

_ too

50

o ,01 .02
i i I i

.03 .04 .05 .06

Time, sec

Figure 3. Loading history.

Closed-Loop Response

The problem considered is the beam of figure 1 with tip load having the time history shown in

figure 3. The nonzero portion of the loading is represented by a piecewise linear approximation of

the (1 - cos(100_t)) distribution. Ten steps are taken during the time that the load rises to a peak

and returns to 0. The two controllers shown in figure 1 were designed to damp the first two beam

vibration modes based on the lumped mass model. The controller matrices are shown in table II and

are based on the active vibration absorber (AVA) concept of reference 8. The acceleration response

at controller location 1 for the disturbance described in figure 3 was determined using 12 modes

(frequencies up to 445 Hz) and is shown in figure 4; a rapid decay is evident. The same controller

and disturbance applied to the beam with distributed mass in the diagonal members results in the

response shown in figure 5. The response was determined using 36 modes in order to capture the

effect of the many local modes present. In this case, frequencies up to 150 Hz were present which



correspond to about the fifth mode of the truss having no diagonal mass. The response of the truss

having a distributed diagonal mass shows an additional frequency content, higher peak accelerations,

and a longer decay time than the response for the truss having no diagonal mass.

Table II. Control Matrices

h z 0 0 i0 0 0

- 5905.237 0 - 49.26434

0 -94 500.35 0 - 197.0654

n

0 0

0 0

-1 0

0 -1

"14 208 0 118.53 0

0 268 570 0 560.06
D

15

10
¢'4

5

do 0

-5

-10

-15 i i I I I I -20
0 . I .2 .3 .4 .5 .6 0

Time, sec

1 I , I I I I
•I .2 .3 .4 .5 .6

Time, sec

Figure 4. Acceleration response at control loca-

tion 1 for model having only lumped mass.

Figure 5. Acceleration response at control location 1

for model having diagonal member mass.

Accuracy and Efficiency

Accurate results for any time step can be obtained from the nonpartitioned solution (eq. (18)) at

the expense of computer time. Identical results can also be obtained by using the present method

(eqs. (13) (16)). The trade-off between accuracy and computer efficiency for these two approaches

is shown in figures 6 and 7. In figure 6 the percentage error of the maximum displacement is plotted

as a function of the number of terms in the Taylor series. Results are given for two time steps:

(1) 5 = 0.002 (solid curve) which was the size of the linear segments of the applied load variation,

and (2) di = 0.001 (dashed curve) which was half that value. In figure 7 the relative computer

time (Central Processing Unit time) for these cases is shown. A greater improvement in accuracy

can be obtained with less of a time penalty by increasing the number of terms in the Taylor series

rather than by reducing the time step. The relative computer time for the solution done to machine

accuracy from equation (18) is shown as a horizontal line at the top of figure 7.

9



IO1

I0 1

K

m 10 3

8 = 0,002
-.., -" " ", _ ---8=0.001

E

Full matrix

_ 8 = 0.002

--- 8=0.001 _ ,- .-- _ _ .-

12

10

8

6

4

2

0
10-5 I I I I I I I I I i I I

0 I 2 3 4 5 6 I 2 3 4 5 6

Highest derivative Highest derivative

Figure 6. Error as a function of solution parameters. Figure 7. Computer time as a function of solution

parameters.

The relative computer time for the two methods is a function of the number of modes used in the

solution. Results obtained for the problem described in this paper are shown in figure 8 in which

relative computer time is plotted against the number of modes used. The curves are based on results

for 12, 36, and 50 modes with best-fit equations developed to extrapolate to the 100 modes shown

in the figure. The setup time for equation (18) is a cubic function of the number of modes, and at

each time step the computational time is a quadratic function of the number of modes. In contrast,

results obtained from equations (13) (16) which preserve the diagonal nature of the problem are

basically a linear function of the number of modes resulting in significant computational savings for

large structural models.

1200

1000

8OO

6oo

$. 4OO

2OO

_N=3

- - -N=6

-P Full matrix

/

/

/

,J

/

/

/

/

/

/

f

I i
0 20 40 60 80 IOO

Modes

Figure 8. Comparison of computer time for various computational approaches. Number of derivatives used in

partitioned approach as denoted by N.

Concluding Remarks

A method has been presented for calculating the response of a structure subject to time-varying

loads and a general control law that may include the dynamics of the controller. The method uses

the natural vibration modes of the structure. By expanding the control forces as a Taylor series,

the method achieved accurate results independent of time step size while preserving the uncoupled

nature of the classical modal transient response solution. A study of the computer efficiency of the

approach showed that the computer time was nearly a linear function of the number of modes used,

whereas other commonly used methods involving a full matrix had as much as a cubic variation of

computer time with number of modes.

10



The method was applied to two variations of a planar truss model. One model had only lumped

mass, and the other had mass in the diagonal members such that first-beam bending and local
member vibration were near the same frequency. Closed-loop simulation results showed that the

controller produced good decay of vibrational response for the lumped mass. However, a more

complicated response, increased accelerations, and longer decay times were observed for the model

with member mass. These results indicate the importance of local modeling and the need to include

large numbers of modes in the simulation. The method developed herein is particularly well suited
for the simulation of closed-loop structural systems when large numbers of modes must be retained.

NASA Langley Research Ccnter
Hampton, VA 23681-0001
March 24, 1993
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Appendix

Modified Control Equations

The output measurement y can be expressed in terms of a by combining equations (3) and (5).

Thus,
y = Hl_a+ H2_h + H3_ + H4u (A1)

Eliminating il from equation (A1) by using equation (8) gives

y = Fla + F2fi + Faf + F4u (A2)

where

The expression for u is

Solving equation (A3) for u gives

where

F1 = HI_ - H3_m -lk

F2 = H2_ - H3_Pm-lg

F3 = H3 _m-1

F4 = H4 + H3 _m-I@TE

u = Cx + D(Fla + F2A + F3f + F4u)

u = Pla + P2A + Paf + P4x

Pj = ZDFj (J = 1,2,3)

P4 = ZC

Z = (I- DF4) -1

By using equations (A2) and (A4), the equation for the controller state can be written as

= Ela + E2fi + E3f + E4x

where

Ej = B(Fj + F4Pj)

E 4 = A + BF4P4

(J = 1,2,3)

(A3)

(A4)

(A5)

12
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